Deep learning based channel estimation optimization in VLC systems
نویسندگان
چکیده
Abstract This paper aims to improve the channel estimation (CE) in indoor visible light communication system. The proposal of this deals with a system that depends on comparison between Deep Neural Network (DNN), Yolo v3, and Kalman filter (KF) algorithm, for two optical modulation techniques; asymmetrically clipped optical-orthogonal frequency-division multiplexing (ACO-OFDM) direct current frequency division (DCO-OFDM). CE can be evaluated by error rates received bits, where increased means performance decrease vice versa. Receiving less errors at receiver indicates improved performance. Hence, main aim our work is rate using different estimators. Furthermore, we apply automatic hyper-parameter approach Bayesian optimization, v3 model reduce positioning error. metric parameter bit (BER) determine improvement ratio systems. based training OFDM samples signal labels which are corresponding signals OFDM. At BER = 10 −3 DCO-OFDM, DNN outperforms KF 1.7 dB (8.09%) energy per noise $$(E_{b} {/}N_{o} )$$ ( E b / N o ) axis. Also, ACO-OFDM , achieves better results than about 1.9 (11.8%) ){ }$$ For values M QAM, average ~ 1.2 (~ 13%).
منابع مشابه
channel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Deep learning-based CAD systems for mammography: A review article
Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...
متن کاملDeep Learning-based Channel Estimation for Beamspace mmWave Massive MIMO Systems
Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave (mmWave) massive multiple-input and multiple-output systems. To solve this problem, we exploit a learned denoising-based approximate message passing (LDAMP) network. This neural network can learn channel structure and estimate channel from a larg...
متن کاملImproved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation
The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...
متن کاملPilot-based Channel Estimation in OFDM Systems
The channel estimation techniques for pilot-based OFDM systems are investigated. The channel estimation is studied for different pilot densities (2, 4, 6, and 10) in frequency-domain and fixed pilot allocation in temporal-domain for low delay spread and high delay spread channels. The estimation of channel in frequency-domain is based on interpolation, polynomial-based generalized linear model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optical and Quantum Electronics
سال: 2022
ISSN: ['1572-817X', '0306-8919']
DOI: https://doi.org/10.1007/s11082-022-04363-7